Abstracts
Résumé
Les corégulateurs de transcription sont des protéines essentielles à l’activation de l’expression des gènes. Ces corégulateurs ne se lient pas à l’ADN ; associés aux facteurs de transcription, ils servent de pont avec la machinerie basale de transcription ou sont impliqués dans le remodelage de la chromatine. PGC-1α est le premier co-activateur à présenter une relative spécificité tissulaire d’expression. Exprimé dans le tissu adipeux brun, le muscle squelettique, le foie et le pancréas, il joue un rôle majeur dans le contrôle des métabolismes énergétique et glucidique. Sur le plan moléculaire, PGC-1α présente également la particularité de coupler la transcription des gènes à l’épissage des pré-ARNm.
Summary
Transcriptional coactivators can be important targets for physiologic regulation. PPARγ coactivator-1α (PGC-1α), in cooperation with several transcription factors, has emerged as a key regulator of several aspects of mammalian energy metabolism including mitochondrial biogenesis, adaptive thermogenesis in brown adipose tissue, glucose uptake, fiber type-switching in skeletal muscle, gluconeogenesis in liver and insulin secretion from pancreas. Recent studies have shown a reduced expression of PGC-1α in skeletal muscle of diabetic and prediabetic humans. Moreover, expression of PGC-1α in white fat cells activates a broad program of adaptive thermogenesis characteristic of brown fat cells. PGC-1α could be a target for antiobesity or diabetes drugs. The aim of this article was to summarize the molecular mechanisms and biological programs controlled by the transcriptional coactivator PGC-1α.
Appendices
Références
- 1. Xu J, Li Q. Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol 2003 ; 17 : 1681-92.
- 2. Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998 ; 92 : 829-39.
- 3. Larrouy D, Vidal H, Andreelli F, et al. Cloning and mRNA tissue distribution of human PPARgamma coactivator-1. Int J Obesity 1999 ; 23 : 1327-32.
- 4. Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001 ; 413 : 131-8.
- 5. Yoon JC, Xu G, Deeney JT, et al. Suppression of beta cell energy metabolism and insulin release by PGC-1alpha. Dev Cell 2003 ; 5 : 73-83.
- 6. De Souza CT, Gasparetti AL, Pereira-da-Silva M, et al. Peroxisome proliferator-activated receptor gamma coactivator-1-dependent uncoupling protein-2 expression in pancreatic islets of rats : a novel pathway for neural control of insulin secretion. Diabetologia 2003 ; 46 : 1522-31.
- 7. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha) : transcriptional coactivator and metabolic regulator. Endocrinol Rev 2003 ; 24 : 78-90.
- 8. Tiraby C, Tavernier G, Lefort C, et al. Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 2003 ; 278 : 33370-6.
- 9. Oberkofler H, Schraml E, Krempler F, et al. Potentiation of liver X receptor transcriptional activity by peroxisome-proliferator-activated receptor gamma co-activator 1 alpha. Biochem J 2003 ; 371 : 89-96.
- 10. Zhang Y, Castellani LW, Sinal CJ, et al. Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 2004 ; 18 : 157-69.
- 11. Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem 2002 ; 277 : 40265-74.
- 12. Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA 2001 ; 98 : 3820-5.
- 13. Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003 ; 423 : 550-5.
- 14. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999 ; 98 : 115-24.
- 15. Knutti D, Kressler D, Kralli A. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc Natl Acad Sci USA 2001 ; 98 : 9713-8.
- 16. Wallberg AE, Yamamura S, Malik S, et al. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell 2003 ; 12 : 1137-49.
- 17. Puigserver P, Adelmant G, Wu Z, et al. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 1999 ; 286 : 1368-71.
- 18. Fan M, Rhee J, St-Pierre J, et al. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha : modulation by p38 MAPK. Genes Dev 2004 ; 18 : 278-89.
- 19. Puigserver P, Rhee J, Lin J, et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 2001 ; 8 : 971-82.
- 20. Ichida M, Nemoto S, Finkel T. Identification of a specific molecular repressor of the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1alpha). J Biol Chem 2002 ; 277 : 50991-5.
- 21. Schreiber SN, Knutti D, Brogli K, et al. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha). J Biol Chem 2003 ; 278 : 9013-8.
- 22. Schreiber SN, Emter R, Hock MB, et al. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA 2004 ; 101 : 6472-7.
- 23. Mootha VK, Handschin C, Arlow D, et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 2004 ; 101 : 6570-5.
- 24. Russell AP, Feilchenfeldt J, Schreiber S, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 2003 ; 52 : 2874-81.
- 25. Lehman JJ, Barger PM, Kovacs A, et al. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 2000 ; 106 : 847-56.
- 26. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003 ; 34 : 267-73.
- 27. Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes : potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 2003 ; 100 : 8466-71.
- 28. Garnier A, Fortin D, Delomenie C, et al. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol (Lond) 2003 ; 551 : 491-501.
- 29. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000 ; 20 : 1868-76.
- 30. Louet JF, Hayhurst G, Gonzalez FJ, et al. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB). J Biol Chem 2002 ; 277 : 37991-8000.
- 31. Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002 ; 418 : 797-801.
- 32. Tiraby C, Langin D. Conversion from white to brown adipocytes : a strategy for the control of fat mass ? Trends Endocrinol Metab 2003 ; 14 : 439-41.
- 33. Baar K, Wende AR, Jones TE, et al. Adaptations of skeletal muscle to exercise : rapid increase in the transcriptional coactivator PGC-1. FASEB J 2002 ; 16 : 1879-86.
- 34. Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001 ; 413 : 179-83.
- 35. Daitoku H, Yamagata K, Matsuzaki H, et al. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 2003 ; 52 : 642-9.
- 36. Rhee J, Inoue Y, Yoon JC, et al. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1) : requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA 2003 ; 100 : 4012-7.
- 37. Koo SH, Satoh H, Herzig S, et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med 2004 ; 10 : 530-4.