Abstracts
Résumé
Les aires protégées peuvent contribuer à réduire la perte de biodiversité en maintenant des fonctions écologiques clés. Atteindre cet objectif implique d’identifier et de protéger les corridors de déplacement favorables à la faune en périphérie des aires protégées. Nous avons aidé Parcs Canada pour localiser des corridors favorables aux déplacements de la martre d’Amérique (Martes americana) dans le parc national Forillon et sa périphérie. Puisque le comportement des animaux peut changer selon les variations des conditions environnementales, nous avons effectué cet exercice durant 2 périodes contrastées : sans neige (mai-novembre) et avec neige (décembre-avril). Nous avons utilisé des données télémétriques GPS pour caractériser les patrons de sélection d’habitats saisonniers, lesquels nous ont permis de modéliser la résistance du paysage et d’identifier les parcelles d’habitats favorables à la connectivité. Nous avons ensuite utilisé la théorie des circuits électriques pour délimiter les corridors entre ces parcelles. Les martres évitaient les milieux ouverts, les altitudes élevées et la proximité des routes durant la période sans neige, alors qu’elles évitaient les routes secondaires, mais sélectionnaient des zones proches des routes principales et des bâtiments durant la période avec neige. La localisation des corridors variait aussi entre les périodes : la connectivité augmentait avec la présence de forêts en régénération (21-60 ans) et de forêts résineuses matures (> 60 ans) et diminuait avec la présence de milieux ouverts. Notre étude peut contribuer à protéger les corridors favorables aux déplacements des martres, et souligne l’importance de considérer les variations saisonnières lors de la modélisation de la connectivité fonctionnelle.
Mots-clés :
- corridors de déplacements,
- Martes americana,
- sélection d’habitats,
- télémétrie GPS,
- théorie des circuits
Abstract
Protected areas can help reduce biodiversity loss by maintaining key ecological functions. Achieving this goal involves identifying and protecting suitable movement corridors for wildlife at the periphery of protected areas. The authors assisted Parks Canada in locating suitable movement corridors for the American marten (Martes americana) in Forillon National Park (Québec, Canada) and its surrounding area. Since animal movement patterns can change according to variations in environmental conditions, this exercise was carried out during two contrasting periods: snow-free (May-November) and snow-covered (December-April). GPS telemetry data were used to characterize seasonal habitat selection patterns, which allowed the modelling of landscape resistance and the identification of suitable habitat patches to connect. The electrical circuit theory was then used to delineate corridors between these patches. Martens avoided open areas, high elevations and proximity to roads during the snow-free period, while avoiding secondary roads but selecting areas close to primary roads and buildings during the snow-covered period. The location of corridors also varied between periods: connectivity increased with the presence of regenerating forests (21-60 years old) and mature coniferous forests (>60 years old), but decreased with the presence of open areas. Our study can help protecting corridors favorable to marten movements, and highlights the importance of considering seasonal variations when modeling functional connectivity.
Keywords:
- circuit theory,
- GPS telemetry,
- habitat selection,
- Martes americana,
- movement corridors
Appendices
Bibliographie
- Anton, C.B., D.W. Smith, J.P. Suraci, D.R. Stahler, T.P. Duane et C.C. Wilmers, 2020. Graywolf habitat use in response to visitor activity along roadways in Yellowstone National Park. Ecosphere, 11 (6) : e03164. https://doi.org/10.1002/ecs2.3164.
- Baguette, M. et H. Van Dyck, 2007. Landscape connectivity and animal behavior: Functional grain as a key determinant for dispersal. Landscape Ecology, 22 (8) : 1117-1129. https://doi.org/10.1007/s10980-007-9108-4.
- Bargelt, L., M.-J. Fortin et D.L. Murray, 2020. Assessing connectivity and the contribution of private lands to protected area networks in the United States. PLOS ONE, 15 (3) : e0228946. https://doi.org/10.1371/journal.pone.0228946.
- Bateman, M.C., 1986. Winter habitat use, food habits and home range size of the marten, Martes americana, in western Newfoundland. Canadian Field Naturalist, 100 : 58-62.
- Betts, M., C. Wolf, W.J. Ripple, B. Phalan, K.A. Millers, A. Duarte, S.H.M. Butchart et T. Levi, 2017. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature, 547 : 441-444. https://doi.org/10.1038/nature23285.
- Boyce, M.S., P.R. Vernier, S.E. Nielsen et F.K.A. Schmiegelow, 2002. Evaluating resource selection functions. Ecological Modelling, 157 : 281-300. https://doi.org/10.1016/S0304-3800(02)00200-4.
- Buskirk, S.W. et R.A. Powell, 1994. Habitat ecology of Fishers and American Martens. Dans : Buskirk, S.W., A.S. Harestad, M.G. Raphael et R.A. Powell (édit.). Martens, sables, and fishers: Biology and conservation. Cornell University Press, Ithaca, p. 283-296.
- Cameron Trudel, O., 2011. Influence de la route 197 sur l’occupation du paysage par la martre d’Amérique (Martes americana) et le pékan (M. pennanti) dans le parc national Forillon. Mémoire de maîtrise, Université de Moncton, 94 p.
- Cardillo, M., A. Purvis, W. Sechrest, J.L. Gittleman, J. Bielby et G.M. Mace, 2004. Human population density and extinction risk in the world’s carnivores. PLOS Biology, 2 (7) : 909914. https://doi.org/10.1371/journal.pbio.0020197.
- Cargnelutti, B., A. Coulon, A.J.M. Hewison, M. Goulard, J.-M. Angibault et N. Morellet, 2007. Testing global positioning system performance for wildlife monitoring using mobile collars and known reference points. Journal of Wildlife Management, 71 : 1380-1387. https://doi.org/10.2193/2006-257.
- Carpenter, J., C. Aldrigde et M.S. Boyce, 2010. Sage-grouse habitat selection during winter in Alberta. Journal of Wildlife Management, 74 : 1806-1814. https://doi.org/10.2193/2009-368.
- Carvalho, F., R. Carvalho, A. Mira et P. Beja, 2016. Assessing landscape functional connectivity in a forest carnivore using path selection functions. Landscape Ecology, 31 : 1021-1036. https://doi.org/10.1007/s10980-015-0326-x.
- Chapin, T.G., D.J. Harrison et D.M. Phillips, 1997. Seasonal habitat selection by marten in an untrapped forest preserve. Journal of Wildlife Management, 61 (3) : 707-717. https://doi.org/10.2307/3802178.
- Crête, M. et S. Larivière, 2003. Estimating the costs of locomotion in snow for coyotes. Canadian Journal of Zoology, 81 (11) : 1808-1814. https://doi.org/10.1139/z03-182.
- Crooks, K.R. et M. Sanjayan, 2006. Connectivity conservation: Maintaining connections for nature. Cambridge University Press, Cambridge, 732 p.
- ESRI, 2021. ArcGIS Desktop. Version 10.8.2. Environmental Systems Research Institute, Inc., Redlands, California.
- Finch, D., D.P. Corbacho, H. Schofield, S. Davison, P.G.R. Wright, R.K. Broughton et F. Mathews, 2020. Modelling the functional connectivity of landscapes for greater horseshoe bats Rhinolophus ferrumequinum at a local scale. Landscape Ecology, 35 : 577-589. https://doi.org/10.1007/s10980-019-00953-1.
- Gillies, C.S., M. Hebblewhite, S.E. Nielsen, M.A. Krawchuk, C.L. Aldridge, J.L. Frair, D.J. Saher, C.E. Stevens et C.L. Jerde, 2006. Application of random effects to the study of resource selection by animals. Journal of Animal Ecology, 75 : 887-898. https://doi.org/10.1111/j.1365-2656.2006.01106.x.
- Godbout, G. et J.-P. Ouellet, 2008. Habitat selection of American marten in a logged landscape at the southern fringe of the boreal forest. Écoscience, 15 : 332-342. https://doi.org/10.2980/15-3-3091.
- Hansen, A.J. et R. DeFries, 2007. Ecological mechanisms linking protected areas to surrounding lands. Ecological Applications, 17 (4) : 974-988. https://doi.org/10.1890/05-1098.
- Hummel, C., D. Poursanidis, D. Orenstein, M. Elliott, M.C. Adamescu, C. Cazacu, G. Ziv, N. Chrysoulakis, J. van der Meer et H. Hummel, 2019. Protected area management: Fusion and confusion with the ecosystem services approach. Science of the Total Environment, 651 : 2432-2443. https://doi.org/10.1016/j.scitotenv.2018.10.033.
- Johnson, D.H., 1980. The comparison of usage and availability measurements for evaluating resource preference. Ecology, 61 : 65-71. https://doi.org/10.2307/1937156.
- Johnson, H.E., S.W. Breck, D.L. Baruch-Mordo, C.W. Lackey, K.R. Wilson, J. Broderick, J.S. Mao et J.P. Beckmann, 2015. Shifting perceptions of risk and reward: Dynamic selection for human development by black bears in the western United States. Biological Conservation, 187 : 164-172. https://doi.org/10.1016/j.biocon.2015.04.014.
- Jones, D., A. Hansen, K. Bly, K. Doherty, J. Verschuyl, J. Paugh, R. Carle et S. Story, 2009. Monitoring land use and cover around parks: A conceptual approach. Remote Sensing of Environment, 113 : 1346-1356. https://doi.org/10.1016/j.rse.2008.08.018.
- Kaszta, Z., S.A. Cushman, A.J. Hearn, D. Burnham, E.A. Macdonald, B. Goossens, S.K.S.S. Nathan et D.W. Macdonald, 2019. Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo). Biological Conservation, 235 : 63-76. https://doi.org/10.1016/j.biocon.2019.04.001.
- Koehler, G.M. et M.J. Hornocker, 1977. Fire effects on marten habitat in the Selway-Bitterroot Wilderness. Journal of Wildlife Management, 41 : 500-505. https://doi.org/10.2307/3800522.
- Laliberte, A.S. et W.J. Ripple, 2004. Range contractions of North American carnivores and ungulates. BioScience, 54 : 123-138. https://doi.org/10.1641/0006-3568(2004)054[0123:RCONAC]2.0.CO;2.
- Larivière, S., H. Jolicoeur et M. Crête, 2000. Status and conservation of the gray wolf (Canis lupus) in wildlife reserves of Québec. Biological Conservation, 94 : 143-151. https://doi.org/10.1016/S0006-3207(99)00185-8.
- Marneweck, C., A.R. Butler, L.C. Gigliotti, S.N. Harris, A.J. Jensen, M. Muthersbaugh, B.A. Newman, E.A. Saldo, K. Shute, K.L. Titus, S.W. Yu et D.S. Jachowski, 2021. Shining the spotlight on small mammalian carnivores: Global status and threats. Biological Conservation, 255 : 109005. https://doi.org/10.1016/j.biocon.2021.109005.
- Martensen, A.C., S. Saura et M.-J. Fortin, 2017. Spatio-temporal connectivity: Assessing the amount of reachable habitat in dynamic landscapes. Methods in Ecology and Evolution, 8 :1253-1264. https://doi.org/10.1111/2041-210X.12799.
- Martin, J., G. Vourc’h, N. Bonnot, B. Cargnelutti, Y. Chaval, B. Lourtet, M. Goulard, T. Hoch, O. Plantard, A.J.M. Hewison et N. Morellet, 2018. Temporal shifts in landscape connectivity for an ecosystem engineer, the roe deer, across a multiple-use landscape. Landscape Ecology, 33 : 937-954. https://doi.org/10.1007/s10980-018-0641-0.
- McRae, B.H., B.G. Dickson, T.H. Keitt et V.B. Shah, 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89 (10) : 2712-2724. https://doi.org/10.1890/07-1861.1.
- Mergey, M., R. Helder et J.J. Roeder, 2011. Effects of forest fragmentation on space-use patterns in the European pine marten (Martes martes). Journal of Mammalogy, 92 : 328-335. https://doi.org/10.1644/09-MAMM-A-366.1.
- [MTMD] Ministère des Transports et de la Mobilité durable, 2022. Débit de circulation : débit journalier moyen annuel. Gouvernement du Québec, Québec. Disponible en ligne à : https://www.donneesquebec.ca/recherche/dataset/debit-de-circulation. [Visité le 2022-04-01].
- Minor, E.S. et T.R. Lookingbill, 2010. A multiscale network analysis of protected-area connectivity for mammals in the United States. Conservation Biology, 4 (6) : 1549-1558. https://doi.org/10.1111/j.1523-1739.2010.01558.x.
- Mohr, C.O., 1947. Table of equivalent populations of North American small mammals. American Midland Naturalist Journal, 37 : 223-249. https://doi.org/10.2307/2421652.
- Moriarty, K.M., C.W. Epps, M.G. Betts, D.J. Hance, J.D. Bailey et W.J. Zielinski, 2015. Experimental evidence that simplified forest structure interacts with snow cover to influence functional connectivity for Pacific martens. Landscape Ecology, 30 : 1865-1877. https://doi.org/10.1007/s10980-015-0216-2.
- Mortelliti, A., A.M. Brehm et B.E. Evans, 2022. Umbrella effect of monitoring protocols for mammals in the northeast US. Scientific Reports, 12 : 1893. https://doi.org/10.1038/s41598-022-05791-x.
- Mui, A.B., B. Caverhill, B. Johnson, M.-J. Fortin et Y. He, 2017. Using multiple metrics to estimate seasonal landscape connectivity for Blanding’s turtles (Emydoidea blandigii) in a fragmented landscape. Landscape Ecology, 32 : 531-546. https://doi.org/10.1007/s10980-016-0456-9.
- Parcs Canada, 2022. Plan directeur du parc national du Canada Forillon, 2022. Parc national Forillon, Gaspé, 23 p. Disponible en ligne à : https://publications.gc.ca/collections/collection_2022/pc/R64-105-15-2022-fra.pdf.
- Payer, D.C. et D.J. Harrison, 2003. Influence of forest structure on habitat use by American marten in an industrial forest. Forest Ecology and Management, 179 : 145-156. https://doi.org/10.1016/S0378-1127(02)00517-0.
- Potvin, F., L. Bélanger et K. Lowell, 2000. Marten habitat selection in a clearcut boreal landscape. Conservation Biology, 14 (3) : 844-857. https://doi.org/10.1046/j.1523-1739.2000.99036.x.
- Primack, R.B., 2006. Essentials of conservation biology, vol. 23. Sinauer Associates, Sunderland, 603 p.
- R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Disponible en ligne à : https://www.r-project.org/.
- Rondini, C. et L. Boitani, 2002. Habitat use by beech martens in a fragmented landscape. Ecography, 25 : 257-264. https://doi.org/10.1034/j.1600-0587.2002.250301.x.
- Salgueiro, P.A., F. Valerio, C. Silva, A. Mira, J.E. Rabaça et S.M. Santos, 2021. Multi species landscape functional connectivity enhances local bird species diversity in a highly fragmented landscape. Journal of Environmental Management, 284 : 112066. https://doi.org/10.1016/j.jenvman.2021.112066.
- Sirén, A.P.K., P.J. Pekins, M.J. Ducey et J.R. Kilborn, 2016. Spatial ecology and resource selection of a high-elevation American marten (Martes americana) population in the northeastern United States. Canadian Journal of Zoology, 94 : 169-180. https://doi.org/10.1139/cjz-2015-0148.
- Smith, A.C. et J.A. Schaefer, 2002. Home-range size and habitat selection by American marten (Martes americana) in Labrador. Canadian Journal of Zoology, 80 (9) : 1602-1609. https://doi.org/10.1139/z02-166.
- Taylor, P.D., L. Fahrig, K. Henein et G. Merriam, 1993. Connectivity is a vital element of landscape structure. Oikos, 68 : 571-573. https://doi.org/10.2307/3544927.
- Thompson, I.D., J.M. Fryxell et D.J. Harrison, 2012. Improved insight into use of habitat by American martens. Dans : Aubry, K.B., W.J. Zielinski, M.J. Raphael, G. Proulx et S.W. Buskirk (édit.). Biology and conservation of martens, sables, and fishers. Cornell University Press, Ithaca, NY, p. 209-230. https://doi.org/10.7591/9780801466076-012.
- Tigner, J., E.M. Bayne et S. Boutin, 2015. American marten respond to seismic lines in northern Canada at two spatial scales. PLOS ONE, 10 (3) : e0118720. https://doi.org/10.1371/journal.pone.0118720.
- USDA Forest Service, 2005. American marten (Martes americana) species assessment. Grand Mesa, Uncompahgre, and Gunnison National Forest, 23 p. Disponible en ligne à : https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5199823.pdf.
- Viau, J.-P., D. Sigouin et M.-H. St-Laurent, 2024. Seasonality in functional connectivity: A case study with the American marten in Forillon National Park. Ecosphere, 15 : e4866. https://doi.org/10.1002/ecs2.4866.
- Wasserman, T.N., S.A. Cushman et D.O. Wallin, 2010. Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 25 : 1601-1612. https://doi.org/10.1007/s10980-010-9525-7.
- Wilson, K.A., J. Carwardine et H.P. Possingham, 2009. Setting conservation priorities. Annals of the New York Academy of Sciences, 1162 : 237-264. https://doi.org/10.1111/j.1749-6632.2009.04149.x.
- Zeller, K.A., D.W. Wattles, L. Conlee et S. DeStefano, 2019. Black bears alter movements in response to anthropogenic features with time of day and season. Movement Ecology, 7 : 19. https://doi.org/10.1186/s40462-019-0166-4.
- Zeller, K.A., R. Lewison, R.J. Fletcher, Jr., M.G. Tulbure et M.K. Jennings, 2020. Understanding the importance of dynamic landscape connectivity. Land, 3 : 303. https://doi.org/10.3390/land9090303.
- Zielinski, W.J., J.M. Tucker et K.M. Rennie, 2017. Niche overlap of competing carnivores across climatic gradients and the conservation implications of climate change at geographic range margins. Biological Conservation, 209 : 533-545. https://doi.org/10.1016/j.biocon.2017.03.016.