Résumés
Résumé
Il existe de nombreuses sources d’espèces actives de l’oxygène (EAO) dans la cellule ; malgré l’importance de chacune d’entre elles, la mitochondrie a été choisie comme sujet central de cet article en raison de son rôle primordial dans la bio-énergétique et du fait qu’elle constitue le site majeur de la production cellulaire d’EAO, 80 % de l’anion superoxyde provenant de la chaîne respiratoire. Cette production est indissociable du processus respiratoire et fortement modulée par les conditions environnementales : elle varie notamment selon l’intensité du métabolisme énergétique ou de la pression en oxygène, permettant aux cellules de s’adapter à ces changements environnementaux en activant des voies spécifiques de signalisation. Lorsque cette production d’EAO devient chronique, elle induit des effets délétères, le stress oxydant mitochondrial étant impliqué aussi bien en physiopathologie qu’au cours du vieillissement.
Summary
Literature on reactive oxygen species (ROS) effects on cell biology and physiopathology is huge and appears to be controversial. This could be explained by the fact that very few studies take into account the real subcellular source of ROS production, their chemical nature and the intensity of their production. In spite of the importance of the other sites of ROS production in the cell, we decided to focus on mitochondrial ROS. Besides their key role in bioenergetics and ATP synthesis, mitochondria are one of the main sites of ROS generation within the cell. 80 % of intracellular superoxide anion is provided by the mitochondrial respiratory chain. Mitochondrial ROS production is closely associated with activity of the respiratory chain and is modulated by environmental factors which can induce constraints on respiratory chain components. Nutrient availability as well as oxygen pressure can both modulate mitochondrial ROS production. When moderately produced, ROS specifically regulate intracellular signalling pathways by reversible oxidation of proteins such as transcription factors or proteins kinases. In this way, they can trigger cell adaptation to environmental changes as modifications of energetic metabolism or hypoxia. Indeed, we demonstrated that mitochondrial ROS act as key elements in the control of white adipose tissue development by specific up-regulation of the anti-adipogenic transcription factor CHOP-10/GADD153. However, when they are produced at high level and in a chronic manner, mitochondrial ROS can also have deleterious effects by massive and irreversible oxidation of their principals targets i.e. lipids, DNA and proteins. In these conditions, mitochondrial ROS are involved in aging process and in pathological situations as metabolic disease.
Parties annexes
Références
- 1. Gutteridge JM. Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interact 1994 ; 91 : 133-40.
- 2. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002 ; 82 : 47-95.
- 3. Halliwell B, Gutteridge JMC. Free radicals in biology and medecine. Oxford : Clarendon Press, 1989 : 22-81.
- 4. Thorpe GW, Fong CS, Alic N, et al. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci USA 2004 ; 1 : 6564-9.
- 5. Morel Y, Barouki R. Repression of gene expression by oxidative stress. Biochem J 1999 ; 342 : 461-96.
- 6. Mahadev K, Wu X, Zilbering A, et al. Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem 2001 ; 276 : 48662-9.
- 7. Mitchell P, Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 1967 ; 213 : 137-9.
- 8. Turrens J.-F. Mitochondrial formation of reactive oxygen species. J Physiol 2003 ; 552 : 335-44.
- 9. Li Y, Huang TT, Carlson EJ, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995 ; 11 : 376-81.
- 10. Reaume AG, Elliott JL, Hoffman EK, et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996 ; 13 : 43-7.
- 11. Carlsson LM, Jonsson J, Edlund T, Marklund SL. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA 1995 ; 92 : 6264-8.
- 12. Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 2002 ; 80 : 780-7.
- 13. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000 ; 404 : 787-90.
- 14. Garcia-Ruiz C, Colell A, Mari M, et al. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 1997 ; 272 : 11369-77.
- 15. Skulachev VP. Role of uncoupled and non-coupled oxidations in maintenance of safely lowlevels of oxygen and its one-electron reductants. Q Rev Biophys 1996 ; 29 : 169-202.
- 16. Nègre-Salvayre A, Hirtz C, Carrera G, et al. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 1997 ; 11 : 809-15.
- 17. Vidal-Puig AJ, Grujic D, Zhang CY, et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 2000 ; 275 : 16258-66.
- 18. Casteilla L, Rigoulet M, Pénicaud L, Casteilla L. Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUMBM Life 2001 ; 52 : 181-8.
- 19. Nemoto S, Takeda K, Yu ZX, et al. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 2000 ; 20 : 7311-8.
- 20. Carrière A, Fernandez Y, Rigoulet M, et al. Inhibition of white preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Lett 2003 ; 550 : 163-7.
- 21. Carrière A, Carmona MC, Fernandez Y, et al. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J Biol Chem 2004 ; 279 : 40462-9
- 22. Semenza GL. Perspectives on oxygen sensing. Cell 1999 ; 98: 281-4.
- 23. Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000 ; 275 : 25130-8.
- 24. Schroedl C, McClintock DS, Budinger GR, Chandel NS. Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 2002 ; 283 : L922-31.
- 25. Yun Z, Maecker HL, Johnson RS, Giaccia AJ. Inhibition of PPARgamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2002 ; 2 : 331-41.
- 26. Pfeiffer A, Schatz H. Diabetic microvascular complications and growth factors. Exp Clin Endocrinol Diabetes 1995 ; 103 : 7-14.
- 27. Sastre J, Pallardo FV, Vina J. The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 2003 ; 35 : 1-8.
- 28. Melov S, Ravenscroft J, Malik S, et al. Extension of life-span with superoxide dismutase/catalase mimetics. Science 2000 ; 289 : 1 567-9.
- 29. Lin SJ, Ford E, Haigis M, et al. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 2004 ; 18 : 12-6.
- 30. Jauslin ML, Meier T, Smith RA, Murphy MP. Mitochondria-targeted antioxidants protect Friedreich ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 2003 ; 17 : 1972-4.