Résumés
Résumé
Tandis que les changements climatiques menacent l’agriculture à petite échelle, l’importance des méthodes de modélisation participatives qui peuvent prendre en compte les aspects humains et environnementaux de ces systèmes agricoles prend de l’ampleur. Cette étude présente un modèle socioéconomique des systèmes alimentaires et environnementaux de la région majoritairement indigène du Tz’olöj Ya’ au Guatemala, développé de manière participative avec les parties prenantes de la région et ensuite couplé à un modèle externe des cultures. Le modèle est par la suite utilisé afin d’analyser l’impact des changements climatiques futurs sur le système, autant que leur interaction avec différentes politiques proposées par les parties prenantes. L’analyse démontre que les cycles de rétroaction entre composantes environnementales et humaines au sein du modèle des dynamiques des systèmes mènent à des réponses parfois contre-intuitives aux politiques proposées. En un même temps, l’utilisation d’un modèle des cultures externe facilite la représentation, de manière réaliste, des impacts des changements climatiques sur les cultures. Cette analyse est la première à utiliser un modèle socio-économique des dynamiques des systèmes, couplé avec un modèle externe des cultures, pour analyser un système alimentaire socio-environnemental et la sécurité alimentaire qui en dépend.
Mots-clés :
- agriculture,
- développement durable,
- changement climatique,
- modèle couplé,
- sécurité alimentaire,
- dynamiques des systèmes,
- modélisation participative
Abstract
Given the increasing pressures exerted by climate change on small-scale agriculture, the importance of participatory modelling methodologies that can consider both the human and environmental components of these systems has become more and more evident. The current study presents a socioeconomic system dynamics model of the food and environmental systems of the predominantly Indigenous region of Tz’olöj Ya’, Guatemala. The model was built in a participatory manner with stakeholders from the region and was then coupled to an external crop growth model before being applied to the analysis of the impact of future climate change and its potential interactions with various stakeholder-proposed policies. The analysis identified several feedback loops between environmental and human components of the system that can lead to counterintuitive responses to the proposed policies. At the same time, the use of an external crop growth model allowed for a more realistic, yet still easily implementable, representation of the impacts of climate change on crop production. This analysis is the first to use a socioeconomic system dynamics model coupled with an external crop growth model to analyse food security in the context of a local socio-environmental food system.
Keywords:
- agriculture,
- sustainable development,
- climate change,
- coupled modelling,
- food security,
- system dynamics,
- participatory modelling
Veuillez télécharger l’article en PDF pour le lire.
Télécharger
Parties annexes
Remerciements
Les auteurs tiennent à remercier l’appui de l’Instituto de Investigación en Ciencias Naturales y Tecnología (Iarna, Universidad Rafael Landívar) lors de la recherche sur le terrain, autant que toutes les parties prenantes qui ont participé à ce projet de recherche. Cette étude a été rendue possible grâce au financement du Centre de recherches pour le développement international (CRDI) du Canada, d’une bourse de 2e cycle du Fonds de recherche du Québec – Nature et technologies (FRQNT), et d’une bourse d’études supérieures du Canada Vanier.
Bibliographie
- Ammar, M. E., E. G. R. Davies, 2019, On the accuracy of crop production and water requirement calculations: Process-based crop modeling at daily, semi-weekly, and weekly time steps for integrated assessments, Journal of Environmental Management, 238, pp.460 472.
- Bojórquez-Tapia, L. A., M. Janssen, H. Eakin, A. Baeza, F. Serrano-Candela, P. Gómez-Priego, et Y. Miquelajauregui, 2019, Spatially-explicit simulation of two-way coupling of complex socio-environmental systems: Socio-hydrological risk and decision making in Mexico City, Socio-Environmental Systems Modelling, 1, [En ligne], URL : https://sesmo.org/article/view/16129
- Brisson, N., C. Gary, E. Justes, R. Roche, B. Mary, D. Ripoche, D. Zimmer, J. Sierra, P. Bertuzzi, P. Burger, F. Bussière, Y. M.Cabidoche, P. Cellier, P. Debaeke, J. P. Gaudillère, C. Hénault, F. Maraux, B. Seguin, et H. Sinoquet, 2003, An Overview of the Crop Model Stics, European Journal of Agronomy,18, 3-4, pp. 309 332.
- Chapman, A., S. Darby, 2016, Evaluating Sustainable Adaptation Strategies for Vulnerable Mega-Deltas Using System Dynamics Modelling: Rice Agriculture in the Mekong Delta’s An Giang Province, Vietnam, Science of The Total Environment, 559, pp. 326 338.
- Chlous-Ducharme, F., F. Gourmelon, 2012, Modélisation d’accompagnement : appropriation de la démarche par différents partenaires et conséquences : Expérience originale en milieu côtier, VertigO – la revue électronique en sciences de l’environnement, 11 3, [En ligne], URL : https://journals.openedition.org/vertigo/12163
- de Wit, A., H. Boogaard, D. Fumagalli, S. Janssen, R. Knapen, D. van Kraalingen, I. Supit, R. van der Wijngaart, K. van Diepen, 2019, 25 years of the WOFOST cropping systems model, Agricultural Systems, 168, pp. 154-167, [En ligne], URL : https://www.sciencedirect.com/science/article/pii/S0308521X17310107
- Di Baldassarre, G., M. Sivapalan, M. Rusca, C. Cudennec, M. Garcia, H. Kreibich, M. Konar, E. Mondino, J. Mård, S. Pande, M. R. Sanderson, F. Tian, A. Viglione, J. Wei, D. J. Yu, V. Srinivasan, et G. Blöschl, 2019, Sociohydrology: Scientific Challenges in Addressing the Sustainable Development Goals, Water Resources Research, 55, 8, [En ligne], URL : https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018WR023901
- Diallo, A. I. P., Y. Baudouin, et M. Raymond, 2014, Modélisation de la dynamique des systèmes socio-écologiques en vue de l’élaboration d’un cadre de référence pour la durabilité environnementale et territoriale : application au massif du Fouta-Djalon (Guinée), Cybergeo, 674, [En ligne], URL : https://journals.openedition.org/cybergeo/26296
- Elsawah, S., S. A. Pierce, S. H. Hamilton, H. van Delden, D. Haase, A. Elmahdi, et A. J. Jakeman, 2017, An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies, Environmental Modelling & Software, 93, pp. 127-145.
- Evans, N. P., T. K. Bauska, F. Gázquez-Sánchez, M. Brenner, J. H. Curtis, et D. A. Hodell, 2018, Quantification of Drought during the Collapse of the Classic Maya Civilization, Science, 361, 6401, pp. 498-501.
- Gill, R. B., P. A. Mayewski, J. Nyberg, G. H. Haug, et L. C. Peterson, 2007, Drought and the Maya collapse, Ancient Mesoamerica, 18, 2, pp. 283-302.
- Halbe, J., C. Pahl-Wostl, et J. Adamowski, 2018, A Methodological Framework to Support the Initiation, Design and Institutionalization of Participatory Modeling Processes in Water Resources Management, Journal of Hydrology, 556, pp. 701-716.
- Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. Fernández del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke et T. E. Oliphant, 2020, Array programming with NumPy, Nature, 585, pp. 357–362.
- Hossain, M. S., J. A. Dearing, F. Eigenbrod, et F. A. Johnson, 2017, Operationalizing Safe Operating Space for Regional Social-Ecological Systems, Science of The Total Environment, 584-585, pp. 673-682.
- Houghton, J. P., M. Siegel, 2015, Advanced data analytics for system dynamics models using PySD, dans : 33rd International Conference of the System Dynamics Society 2015, Cambridge Massachusetts, USA, 19-23 juillet 2015, System Dynamics Society, pp. 1436-1462.
- Hoyer, S., J. Hamman, 2017, xarray: N-D labeled Arrays and Datasets in Python, Journal of Open Research Software, 5, 1, [En ligne], URL : https://openresearchsoftware.metajnl.com/articles/10.5334/jors.148
- Hunter, J. D., 2007, Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 3, pp. 90-95.
- Inam, A., J. Adamowski, J. Halbe, et S. Prasher, 2015, Using Causal Loop Diagrams for the Initialization of Stakeholder Engagement in Soil Salinity Management in Agricultural Watersheds in Developing Countries: A Case Study in the Rechna Doab Watershed, Pakistan, Journal of Environmental Management, 152, pp. 251-267.
- Inam, A., J. Adamowski, S. Prasher, J. Halbe, J. Malard, et R. Albano, 2017a, Coupling of a Distributed Stakeholder-Built System Dynamics Socio-Economic Model with SAHYSMOD for Sustainable Soil Salinity Management – Part 1: Model Development, Journal of Hydrology, 551, pp. 596-618.
- Inam, A., J. Adamowski, S. Prasher, J. Halbe, J. Malard, et R. Albano, 2017b, Coupling of a Distributed Stakeholder-Built System Dynamics Socio-Economic Model with SAHYSMOD for Sustainable Soil Salinity Management – Part 2: Model Coupling and Application, Journal of Hydrology, 551, pp. 278-299.
- INE, 2019, Resultados del Censo 2018, XII Censo Nacional de Población y VII de Vivienda, [En ligne], URL : https://www.censopoblacion.gt/mapas
- Iwanaga, T., D. Partington, J. Ticehurst, B. F. W. Croke, et A. J. Jakeman, 2020, A Socio-Environmental Model for Exploring Sustainable Water Management Futures: Participatory and Collaborative Modelling in the Lower Campaspe Catchment, Journal of Hydrology: Regional Studies, 28, [En ligne], URL : https://www.sciencedirect.com/science/article/pii/S2214581819303726?via%3Dihub
- Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, et J. T. Ritchie, 2003, The DSSAT Cropping System Model, European Journal of Agronomy, 18, 3, pp. 235-265.
- Jones, P. G., P. K. Thornton, 2000, MarkSim: Software to Generate Daily Weather Data for Latin America and Africa, Agronomy Journal, 92, 3, pp. 445-453.
- Luo, M., T. Liu, F. Meng, Y. Duan, A. Frankl, A. Bao, et P. De Maeyer, 2018, Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China, Water, 10, 8, [En ligne], URL : https://www.mdpi.com/2073-4441/10/8/1046
- Malard, J. J., A. Inam, E. Hassanzadeh, J. Adamowski, H. A. Tuy, et H. Melgar-Quiñonez, 2017, Development of a software tool for rapid, reproducible, and stakeholder-friendly dynamic coupling of system dynamics and physically-based models, Environmental Modelling & Software, 96, pp. 410-420.
- Malard, J., J. Adamowski, M. Rojas Díaz, L. Y. Wang (王凌云), H. Tuy, et H. Melgar-Quiñonez, 2023a, Participatory system dynamics modelling for agricultural development and food security: small-scale agriculture and food systems in Indigenous communities of Tz’olöj Ya’ and K’iche’ (Guatemala), manuscript non publié.
- Malard, J., J. Adamowski, H. Tuy, et H. Melgar-Quiñonez, 2023b, Hybrid Bayesian inference-based participatory system dynamics modelling for temporally data-poor regions: small-scale Indigenous agriculture and food systems in Tz’olöj Ya’ and K’iche’ (Guatemala), SSRN, [En ligne], URL : https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4618324
- Malard, J. J., J.. F. Adamowski, M. Rojas Díaz, جسيكا بو نصّار (J. B. Nassar), நல்லுசாமி ஆனந்தராஜா (N. Anandaraja), H. Tuy, L. A. Arévalo-Rodriguez, et H. R. Melgar-Quiñonez, 2020, Development of a New Modular Software Tool for Agroecological Food Web Model Development: Tiko’n, European Journal of Agronomy, 116, [En ligne], URL : https://www.sciencedirect.com/science/article/abs/pii/S1161030120300411?via%3Dihub
- Nguyễn Thành Tựu, 2018, « 시스템동적모델 적용을 통한 기후변화 및 인간활동의 영향이 베트남 메콩 델타 지역 수자원에 미치는 영향 연구 [Un modèle des dynamiques des systèmes des ressources d’eau dans le delta du Mékong face au changement climatique et aux activités humaines], 춘천시 한림대학길 : 한림대학교 대학원 [Chuncheon : Université Hallym], 131 p.
- Parsons, D., C. F. Nicholson, R. W. Blake, Q. M. Ketterings, L. Ramírez-Aviles, J. H. Cherney, et D. G. Fox, 2011a, Application of a Simulation Model for Assessing Integration of Smallholder Shifting Cultivation and Sheep Production in Yucatán, Mexico, Agricultural Systems, 104, 1, pp. 13-19.
- Parsons, D., C. F. Nicholson, R. W. Blake, Q. M. Ketterings, L. Ramírez-Aviles, D. G. Fox, L. O. Tedeschi, et J. H. Cherney, 2011b, Development and Evaluation of an Integrated Simulation Model for Assessing Smallholder Crop–Livestock Production in Yucatán, Mexico, Agricultural Systems, 104, 1, pp. 1-12.
- Patrick Smith, F., D. P. Holzworth, et M. J. Robertson, 2005, Linking Icon-Based Models to Code-Based Models: A Case Study with the Agricultural Production Systems Simulator, Agricultural Systems, 83, 2, pp. 135-151.
- Pauli V., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, et contributeurs à SciPy 1.0, 2020, SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, 17, 3, pp. 261-272.
- Perrone, A., A. Inam, R. Albano, J. Adamowski, et A. Sole, 2020, A Participatory System Dynamics Modeling Approach to Facilitate Collaborative Flood Risk Management: A Case Study in the Bradano River (Italy), Journal of Hydrology, 580, [En ligne], URL : https://www.sciencedirect.com/science/article/abs/pii/S0022169419310893?via%3Dihub
- Seabold, S., J. Perktold, 2010, Statsmodels: Econometric and statistical modeling with python, dans : Proceedings of the 9th Python in Science Conference (SciPy 2010), Austin, Texas, USA, pp. 92-96.
- Srinivasan, V., M. Sanderson, M. Garcia, M. Konar, G. Blöschl, et M. Sivapalan, 2018, Moving Socio-Hydrologic Modelling Forward: Unpacking Hidden Assumptions, Values and Model Structure by Engaging with Stakeholders: Reply to “What Is the Role of the Model in Socio-Hydrology?, Hydrological Sciences Journal, 63, 9, [En ligne], URL : https://www.tandfonline.com/doi/full/10.1080/02626667.2018.1499026
- Stojkovic, M., S. P. Simonovic, 2019, System Dynamics Approach for Assessing the Behaviour of the Lim Reservoir System (Serbia) under Changing Climate Conditions, Water, 11, 8, [En ligne], URL : https://www.mdpi.com/2073-4441/11/8/1620
- Vrac, M., T. Noël, et R. Vautard, 2016, Bias Correction of Precipitation through Singularity Stochastic Removal: Because Occurrences Matter, Journal of Geophysical Research: Atmospheres, 121, 10, [En ligne], URL : https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2015JD024511