Abstracts
Résumé
Le diabète de type 2 - maladie de l’homéostasie du glucose - est un problème majeur de santé publique, qui se caractérise par deux anomalies majeures: une perturbation de la sécrétion des hormones pancréatiques (diminution quantitative et qualitative - phase précoce, pulsatilité - de la sécrétion d’insuline, augmentation de la sécrétion de glucagon), et une perturbation des effets de l’insuline sur ses tissus cibles (insulinorésistance). Les anomalies de l’action de l’insuline sur les tissus cibles se traduisent par une diminution du captage de glucose par les muscles et par une augmentation de la production hépatique de glucose. Elles sont liées à des défauts multiples dans les mécanismes de signalisation par le récepteur de l’insuline et dans des étapes régulatrices du métabolisme du glucose (transport, enzymes clés de la synthèse de glycogène ou de l’oxydation mitochondriale du glucose). Ces défauts «post-récepteurs» sont amplifiés par la présence d’une concentration augmentée d’acides gras libres. Les mécanismes impliqués dans les effets «diabétogènes» des acides gras libres sont analysés dans cet article. En effet, les concentrations élevées d’acides gras libres plasmatiques contribuent à la diminution de l’utilisation musculaire de glucose (principalement par l’atténuation de la transmission du signal insulinique) et à l’augmentation de la production hépatique (stimulation de la néoglucogenèse par l’apport de co-facteurs tels que l’acétyl-CoA, l’ATP et le NADH). L’exposition chronique à des concentrations élevées d’acides gras entraîne une accumulation d’acyl-CoA dans les cellules β du pancréas qui se traduit par la disparition de 50% de ces cellules par apoptose (phénomène de lipotoxicité).
Summary
Type 2 diabetes is characterized by two major defects: a dysregulation of pancreatic hormone secretion (quantitative and qualitative - early phase, pulsatility - decrease of insulin secretion, increase in glucagon secretion), and a decrease in insulin action on target tissues (insulin resistance). The defects in insulin action on target tissues are characterized by a decreased in muscle glucose uptake and by an increased hepatic glucose production. These abnomalities are linked to several defects in insulin signaling mechanisms and in several steps regulating glucose metabolism (transport, key enzymes of glycogen synthesis or of mitochondrial oxidation). These postreceptors defects are amplified by the presence of high circulating concentrations of free fatty acids. The mechanisms involved in the «diabetogenicity» of long-chain fatty acids are reviewed in this paper. Indeed, elevated plasma free fatty acids contribute to decrease muscle glucose uptake (mainly by reducing insulin signaling) and to increase hepatic glucose production (stimulation of gluconeogenesis by providing cofactors such as acetyl-CoA, ATP and NADH). Chronic exposure to high levels of plasma free fatty acids induces accumulation of long-chain acyl-CoA into pancreatic β-cells and to the death of 50 % of β-cell by apoptosis (lipotoxicity).
Appendices
Références
- 1. Owen OE, Reichard GA, Patel MS, Boden G. Energy metabolism in feasting and fasting. In: Klachko DM, Anderson RR, Heimberg M, eds. Hormone and energy metabolism. New York: Plenum Press, 1979: 169-88.
- 2. Reaven GM, Hollenbeck CB, Jen CY, Wu MS, Chen YDI. Measurement of plasma glucose, free fatty acid, lactate and insulin for 24 h in patients with NIDDM. Diabetes 1988; 37: 1020-4.
- 3. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose-fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; I: 785-9.
- 4. Randle PJ, Kerbey AL, Espinal J. Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab Rev 1988; 4: 623-8.
- 5. Zierler KL. Fatty acids as substrates for heart and skeletal muscle. Circ Res 1976; 39: 459-63.
- 6. Girard J. Rôle des acides gras libres dans l’insulino-résistance au cours du diabète non-insulino-dépendant. Diabete Metab 1995; 21: 79-88.
- 7. Boden G. Effects of free fatty acids on gluconeogenesis and glycogenolysis. Life Sci 2003; 72: 977-88.
- 8. Girard J. Acides gras, insulinosécrétion et lipotoxicité. Med Ther Endocrinol 2000; 2 (suppl2): 29-36.
- 9. Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes 1995; 44: 863-70.
- 10. Unger RH, The physiology of cellular liporegulation. Annu Rev Physiol 2003; 65: 333-47.
- 11. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106: 171-6.
- 12. Griffin ME, Marcucci MJ, Cline GW, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 1999; 48: 1270-4.
- 13. Roden M, Price TB, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996; 97: 2859-2865.
- 14. Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999; 103: 253-9.
- 15. Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem 2000; 275: 8456-60.
- 16. Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 2000; 105: 271-8.
- 17. Berne C. The metabolism of lipids in mouse pancreatic islets: the oxidation of fatty acids and ketone bodies. Biochem J 1975; 152: 661-6.
- 18. Malaisse WJ, Malaisse-Lagae F, Sener A, Hellerström C. Participation of endogenous fatty acids in the secretory activity of the pancreatic β-cell. Biochem J 1985; 227: 995-1002.
- 19. Grupping AY, Cnop M, Van Schravendijk C, Hannaert J, Van Berkel T, Pipeleers D. Low density lipoprotein binding and uptake by human and rat islet β-cells. Endocrinology 1997; 138: 4064-8.
- 20. Stein DT, Esser V, Stevenson BE, et al. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest 1996; 97: 2728-35.
- 21. Mason TM, Goh T, Tchipashvili V, et al. Prolonged elevation of plasma free fatty acids desensitizes the insulin secretory response to glucose in vivo in rats. Diabetes 1999; 48: 524-30.
- 22. Paolisso G, Gambardella A, Amato L, et al. Opposite effects of short- and long-term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia 1995; 38: 1295-9.
- 23. Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in β-cell adaptation and failure in the etiology of diabetes. Diabetes 2002; 51 (suppl3): S405-13.
- 24. McGarry JD. What if Minkowski had been ageusic ? An alternative angle on diabetes. Science 1992; 258: 766-70.
- 25. McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51: 7-18.
- 26. Unger RH. How obesity causes diabetes in Zucker diabetic fatty rats. Trends Endocrinol Metab 1997; 8: 276-82.
- 27. McGarry JD, Dobbins RL. Fatty acids, lipotoxicity and insulin secretion. Diabetologia 1999; 42: 128-38.
- 28. Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of β-cell mass compensation for insulin resistance and β-cell defects in the male Zucker diabetic fatty rat. Diabetes 1998; 47: 358-64.
- 29. Man ZW, Zhu M, Noma Y, et al. Impaired β-cell function and deposition of fat droplets in the pancreas as a consequence of hypertriglyceridemia in OLETF rat, a model of spontaneous NIDDM. Diabetes 1997; 46: 1718-24.
- 30. Unger RH. Lipotoxic diseases. Annu Rev Med 2002; 53: 319-36.
- 31. Unger RH, Zhou YT, Orci L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci USA 1999; 96: 2327-32.
- 32. Shimabukuro M, Zhou YT, Lee Y, Unger RH. Troglitazone lowers islet fat and restores β-cell function of Zucker diabetic fatty rats. J Biol Chem 1998; 273: 3547-50.
- 33. Higa M, Zhou YT, Ravazzola M, Baetens D, Orci L, Unger RH. Troglitazone prevents mitochondrial alterations, β-cell destruction, and diabetes in obese prediabetic rats. Proc Natl Acad Sci USA 1999; 96: 11513-8.
- 34. Marshak S, Leibowitz G, Bertuzzi F, et al. Impaired β-cell functions induced by chronic exposure of cultured human pancreatic islets to high glucose. Diabetes 1999; 48: 1230-6.
- 35. Poitout V, Robertson RP. Secondary β-cell failure in type 2 diabetes. A convergence of glucotoxicity and lipotoxicity. Endocrinology 2002; 143: 339-42.