Abstracts
Résumé
Longtemps descriptive, la recherche sur le vieillissement a profondément changé depuis la découverte de gènes régulant la durée de vie. Isolés en criblant le génome de simples nématodes, la plupart de ces gènes appartiennent à une voie de signalisation hautement conservée au cours de l’évolution. Leurs orthologues chez les vertébrés sont les familles des gènes de l’insuline, de l’insulin-like growth factor (IGF) et de leurs voies de signalisation. Très étudiés et connus pour leurs rôles dans la prolifération, la différenciation, la survie cellulaire et le métabolisme intermédiaire, on découvre maintenant leurs multiples fonctions dans le contrôle de la longévité et dans les réponses au stress oxydant, une des causes majeures du vieillissement cellulaire. La signalisation IGF chez les mammifères dépend d’un ensemble de signaux endocriniens que constitue l’axe somatotrope. En effet, plusieurs composantes de cet axe hormonal régulent efficacement la longévité, ce qui a été élégamment démontré par une série de modèles de souris génétiquement modifiées. Il est de plus en plus évident que le contrôle du vieillissement met en jeu des régulations hormonales dont l’ampleur des implications commence à peine à être découverte.
Summary
Research on ageing made a big leap forward when genes regulating lifespan were discovered about a decade ago. First isolated by screening the genome of the nematode Caenorhabditis elegans, most of these genes belong to an essential signalling pathway that is highly conserved during animal evolution. Orthologous genes in vertebrate species are the families of genes coding for insulin, insulin-like growth factors (IGF) and related proteins. Intensively studied and well-known for their pivotal roles in proliferation, differentiation, survival and metabolism of most cells, we now discover their multiples functions with respect to the control of longevity and their ability to modulate the cell’s responses to oxidative stress, a major cause of cellular and organismal ageing. The activity of IGF signalling in mammals depends on a complex interplay of endocrine signals that together constitute the somatotropic axis. Accordingly, several components of this hormone axis, like growth hormone or growth hormone releasing hormone receptors, regulate efficiently animal longevity, which has been elegantly demonstrated by studies performed in genetically modified mouse models. From this and other work, it becomes increasingly clear that the control of ageing is a question of hormonal regulations. We here present several of these models and discuss the respective contributions of insulin and IGF signalling to the regulation of lifespan. We review data on the Klotho gene that acts on lifespan via surprising and not yet fully understood molecular mechanisms, connecting this new, hormone-like substance to IGF and insulin signalling. We further report recent evidence showing that human lifespan might be controlled in similar ways. Finally, we shed some light on clinical GH treatment in humans, from an endocrinologist’s point of view.
Appendices
Références
- 1. McCay CM, Crowell MF. Prolonging the lifespan. Scientific Monthly 1934 ; 39 : 405-14.
- 2. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature 1996 ; 384 : 33.
- 3. Bartke A, Wright JC, Mattison JA, et al. Extending the lifespan of long-lived mice. Nature 2001 ; 414 : 412.
- 4. Kenyon C. A conserved regulatory system for aging. Cell 2001 ; 105 : 165-8.
- 5. Liu JP, Baker J, Perkins AS, et al. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993 ; 75 : 59-72.
- 6. Holzenberger M, Hamard G, Zaoui R, et al. IGF-I receptor gene dosage generates a sexually dimorphic pattern of organ-specific growth deficits, affecting fat tissue in particular. Endocrinology 2001 ; 142 : 4469-78.
- 7. Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates life span and resistance to oxidative stress in mice. Nature 2003 ; 421 : 182-7.
- 8. Migliaccio E, Giorgio M, Mele S, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 1999 ; 402 : 309-13.
- 9. Wolkow CA, Kimura KD, Lee MS, Ruvkun G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 2000 ; 290 : 147-50.
- 10. Alcedo J, Kenyon C. Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 2004 ; 41 : 45-55.
- 11. Murphy CT, McCarroll SA, Bargmann CI, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003 ; 424 : 277-84.
- 12. Hwangbo DS, Gershman B, Tu MP, et al. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 2004 ; 429 : 562-6.
- 13. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci USA 2001 ; 98 : 6736-41.
- 14. Coschigano KT, Holland AN, Riders ME, et al. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 2003 ; 144 : 3799-810.
- 15. Entingh-Pearsall A, Kahn CR. Differential roles of the insulin and insulin-like growth factor-I (IGF-I) receptors in response to insulin and IGF-I. J Biol Chem 2004 ; 279 : 38016-24.
- 16. Baba T, Shimizu T, Suzuki Y, et al. Estrogen, insulin, and dietary signals cooperatively regulate longevity signals to enhance resistance to oxidative stress in mice. J Biol Chem 2005 ; 280 : 16417-26.
- 17. Blüher M, Kahn B, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003 ; 299 : 572-4.
- 18. Roth GS, Lane MA, Ingram DK, et al. Biomarkers of caloric restriction may predict longevity in humans. Science 2002 ; 297 : 811.
- 19. Paolisso G, Barbieri M, Rizzo MR, et al. Low insulin resistance and preserved beta-cell function contribute to human longevity but are not associated with TH-INS genes. Exp Gerontol 2001 ; 37 : 149-56.
- 20. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997 ; 390 : 45-51.
- 21. Nabeshima Y. Challenge of overcoming aging-related disorders. J Dermatol Sci 2000 ; 24 (suppl 1) : S15-21.
- 22. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science 2005 ; 309 : 1829-33.
- 23. Yamamoto M, Clark JD, Pastor JV, et al. Regulation of oxidative stress by the anti-aging hormone Klotho. J Biol Chem 2005 ; 280 : 38029-34.
- 24. Holzenberger M, Martín-Crespo RM, Vicent D, Ruiz-Torres A. Decelerated growth and longevity in men. Arch Gerontol Geriat 1991 ; 13 : 89-101.
- 25. Samaras TT, Storms LH. Impact of height and weight on life span. Bull WHO 1992 ; 70 : 259-67.
- 26. Bonafe M, Barbieri M, Marchegiani F, et al. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity : cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 2003 ; 88 : 3299-304.
- 27. van Heemst D, Beekman M, Mooijaart SP, et al. Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 2005 ; 4 : 79-85.
- 28. Chanson P. Complications cardiovasculaires de l’acromégalie. In : Chanson P, ed. Les conséquences de l’acromégalie. Cachan : Éditions Médicales Internationales, 2001 : 27-41.
- 29. Orme SM, McNally RJ, Cartwright RA, Belchetz PE. Mortality and cancer incidence in acromegaly : a retrospective cohort study. United Kingdom acromegaly study group. J Clin Endocrinol Metab 1998 ; 83 : 2730-4.
- 30. Holdaway IM, Rajasoorya RC, Gamble GD. Factors influencing mortality in acromegaly. J Clin Endocrinol Metab 2004 ; 89 : 667-74.
- 31. Beauregard C, Truong U, Hardy J, Serri O. Long-term outcome and mortality after transsphenoidal adenomectomy for acromegaly. Clin Endocrinol 2003 ; 58 : 86-91.
- 32. Biermasz NR, Dekker FW, Pereira AM, et al. Determinants of survival in treated acromegaly in a single center : predictive value of serial insulin-like growth factor I measurements. J Clin Endocrinol Metab 2004 ; 89 : 2789-96.
- 33. Drake WM, Howell SJ, Monson JP, Shalet SM. Optimizing GH therapy in adults and children. Endocrine Rev 2001 ; 22 : 425-50.
- 34. Maison P, Griffin S, Nicoue-Beglah M, et al. Impact of growth hormone (GH) treatment on cardiovascular risk factors in GH-deficient adults : a metaanalysis of blinded, randomized, placebo-controlled trials. J Clin Endocrinol Metab 2004 ; 89 : 2192-9.
- 35. Swerdlow AJ, Higgins CD, Adlard P, Preece MA. Risk of cancer in patients treated with human pituitary growth hormone in the UK, 1959-85 : a cohort study. Lancet 2002 ; 360 : 273-7.
- 36. Chan JM, Stampfer MJ, Giovannucci E, et al. Plasma insulin-like growth factor-I and prostate cancer risk : a prospective study. Science 1998 ; 279 : 563-6.
- 37. Raynaud-Simon A, Lafont S, Berr C, et al. Plasma insulin-like growth factor I levels in the elderly : relation to plasma dehydroepiandrosterone sulfate levels, nutritional status and mortality. Gerontology 2001 ; 47 : 198-206.
- 38. Dupont J, Holzenberger M. Biology of insulin-like growth factors in development. Birth Defects Res C Embryo Today 2003 ; 69 : 257-71.