Abstracts
Abstract
Aquatic macrophytes are often the dominant element that influences flow conditions within streams, and are often considered as ecosystem engineers that modify their aquatic environment as a result of their physical structure and metabolic activity. The role of aquatic macrophytes on suspended matter sedimentation was studied in three shallow low-order streams in Brittany (North-western France). Field experiments were carried out in April 2007 using Callitriche-like artificial macrophytes and cylindrical sediment traps dug into the channels. Hydrodynamic characteristics (velocity profile, percentage of velocity decrease and turbulence), volume of trapped sediment, particle size characteristics, and total organic matter content were measured within the macrophytes and compared with the control traps. The aquatic macrophytes operated as sediment traps by modifying the local hydrodynamic parameters. Sedimentation of fine suspended particles within the macrophytes reached maximum values when the velocity was significantly reduced, i.e. when the initial velocity was low (less than 0.5 m∙s‑1) and the depth shallow enough for the plant to occupy the entire volume of the column water. Conversely, turbulence was generated around the macrophyte stands, which induced the resuspension of fine particles and only coarse particles were trapped. This study shows the importance of threshold values at the local scale and the highly dynamic effect of macrophytes on flow characteristics.
Key Words:
- Hydrodynamics,
- macrophytes,
- sedimentation,
- stream,
- velocity
Résumé
La présence de macrophytes dans le lit d’un cours d’eau est souvent déterminante, car elle influence les conditions d’écoulement. En effet, les macrophytes sont souvent considérés comme des organismes ingénieurs qui modifient l’environnement aquatique par leur structure physique et leur activité métabolique. Le rôle des macrophytes aquatiques sur la sédimentation des matières en suspension a été étudié dans trois petits cours d’eau peu profonds en Bretagne (France). Les expériences de terrain ont été effectuées en avril 2007 en utilisant des macrophytes artificiels ressemblant à Callitriche et des pièges à sédiments cylindriques positionnés dans les cours d’eau. Les caractéristiques hydrodynamiques (profil de vitesse, taux de décroissance de la vitesse, turbulences), le taux de sédimentation, les caractéristiques granulométriques et le contenu en matière organique particulaire des sédiments piégés dans les macrophytes ont été mesurés et comparés aux témoins. Les macrophytes artificiels se sont comportés comme des pièges à sédiments en modifiant localement les paramètres hydrodynamiques. La sédimentation de particules fines dans les macrophytes atteint des valeurs maximales lorsque la vitesse du courant peut être efficacement ralentie, c’est-à-dire lorsque la vitesse initiale est faible (inférieur à 0,5 m∙s‑1) et la profondeur suffisamment faible pour que la plante occupe tout le volume de la colonne d’eau. Dans le cas contraire, la turbulence générée au voisinage des macrophytes induit une resuspension des particules fines et uniquement les particules grossières sont piégées. Cette étude montre l’importance des valeurs de seuil à l’échelle locale et l’effet très dynamique des macrophytes sur les caractéristiques d’écoulement dans les petits cours d’eau peu profonds.
Mots-clés:
- Hydrodynamisme,
- macrophytes,
- ruisseau,
- sédimentation,
- vitesse
Appendices
References
- BLOESCH J. and N.M. BURNS (1979). A critical review of sedimentation trap technique. Aquat. Sci., 42, 15-55.
- BIRGAND F., J.C. BENOIST, É. NOVINCE, N. GILLIET, P. SAINT-CAST and É. LE SAOS (2005). Mesure des débits à l’aide de débitmètres ultrasoniques Doppler – Cas des petit cours d’eau ruraux. Ingénieries, 41, 23-38.
- BIRGAND F., J. LEFRANÇOIS, C. GRIMALDI, É. NOVINCE, N. GILLIET and C. GASCUEL-ODOUX (2004). Mesure des flux et échantillonnage des matières en suspension sur de petits cours d’eau. Ingénieries, 40, 21-35.
- BRAMLEY R.G.V. and C.H. ROTH (2002). Land use effects on water quality in an intensively managed catchment in the Australian humid tropics. Mar. Freshwat. Res., 53, 931-940.
- BRETSCHKO G. and M. LEICHTFRIED (1987). The determination of organic matter in river sediments. Arch. Hydrobiol. Suppl., 68, 403-417.
- CAROLLO F.G., V. FERRO and D. TERMINI (2002). Flow velocity measurements in vegetated channels. J. Hydraul. Eng., 128, 664-673.
- CHAMBERS P.A., E.E. PAS and K. GIBSON (1992). Temporal and spatial dynamics in riverbed chemistry: the influence of flow and sediment composition. Can. J. Fish. Aquat. Sci., 49, 2128-2140.
- CLARKE S.J. (2002). Vegetation growth in rivers: influences upon sediment and nutrient dynamics. Prog. Phys. Geogr., 26, 159–172.
- COLLINS A.L. and D.E. WALLING (2007). The storage and provenance of fine sediment on the channel bed of two contrasting lowland permeable catchments, UK. River Res. Appl., 23, 429-450.
- COOPER G.G., E.M. CALLAGHAN, V.I. NIKORA, N. LAMOUROUX, B. STAZNER and P. SAGNES (2007). Effects of flume characteristics on the assessment of drag on flexible macrophytes and a rigid cylinder. New Zeal J. Mar. Fresh., 41, 129-135.
- COTTON J. A., G. WHARTON, J.A.B. BASS, C.M. HEPPELL and R.S. WOTTON (2006). The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorph., 77, 320-334.
- DANIEL H. and J. HAURY (1996). Les macrophytes aquatiques : une métrique de l’environnement en rivière. Cybium, 20, 129-142.
- FONSECA M.S. and J.A. CAHALAN (1992). A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine Coastal Shelf. Sci., 35, 565-576.
- GARDNER W.D. (1980). Sediment trap dynamics and calibration: a laboratory evaluation. J. Mar. Res., 38, 17-39.
- GARDNER W.D. (1985). The effect of tilt on sediment trap efficiency. Deep Sea Res., 32, 349-361.
- GAYRAUD S., E. HEROUIN and M. PHILIPPE (2001). Colmatage minéral du lit des cours d’eau : revue bibliographique des mécanismes et des conséquences sur les habitats et les peuplements de macroinvertébrés. Bull. Fr. Pêche Piscic., 365/366, 339-355.
- GHISALBERTI M. and H.M. NEPF (2002). Mixing layers and coherent structure in vegetated aquatic flows. J. Geophys. Res., 107, 3_1-3_11.
- GHISALBERTI M. and H.M. NEPF (2004). The limited growth of vegetated shear layers. Water Resour. Res., 40, 1-12.
- GIBBS H., A. GURNELL, K. HEPPELL and K. SPENCER (2012). Macrophytes: ecosystem engineers in UK urban rivers. EGU General Assembly 2012, 22-27 April, Vienna, Austria, p. 490.
- GREEN J.C. (2005). Modelling flow resistance in vegetated streams: review and development of new theory. Hydrol. Process., 19, 1245-1259.
- GUST G., W. BOWLES, S. GIORDANO and M. HUTTEL (1996). Particle accumulation in a cylindrical sediment trap under laminar and turbulent steady flow: An experimental approach. Aquat. Sci., 58, 4297-326.
- HAMILTON D.P. and S.F. MITCHELL (1996). An empirical model for sediment resuspension in shallow lakes. Hydrobiol., 317, 209-220.
- HANCOCK P.J. (2002). Human impacts on stream-groundwater exchange zone. Environ. Manage., 29, 763-781.
- HARDING J.S., E.F. BENFIELD, P.V. BOLSTAD, G.S. HELFMAN and E.B.D. JONES (1998). Stream biodiversity: The ghost of land use past. Proc. Natl. Acad. Sci. (USA), 95, 14843-14847.
- HARGRAVE B.T. and N.M. BURNS (1979). Assessment of sediment trap collection efficiency. Limnol. Oceanogr., 24, 1124-1136.
- HAURY J. and J.L. BAGLINIÈRE (1996). Les macrophytes, facteurs structurant de l’habitat piscicole en rivière à salmonides. Étude de microrépartition sur un secteur végétalisé du Scorff (Bretagne-Sud). Cybium, 20, 107-122.
- HAURY J. and L. GOUESSE AÏDARA (1999). Quantifying macrophyte cover and standing crops in a river and its tributaries (Brittany, Northwestern France). Hydrobiol., 415, 109-115.
- HEPPELL C.M., G. WHARTON, J.A.C. COTTON, J.A.B. BASS and S.E. ROBERTS (2009). Sediment storage in the shallow hyporeic of lowland vegetated river reaches. Hydrol. Process., 29, 2239-2251.
- HORPPILA J. and L. NURMINEN (2003). Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (Southern Finland). Water Res., 37, 4468-4474.
- KOSMAS C., N. DANALATOS, L.H. CAMMERAAT, M. CHABART, J. DIAMANTOPOULOS, R. FARAND, L. GUTIERREZ, A. JACOB, H. MARQUES, J. MARTINEZ-FERNANDEZ, A. MIZARA, N. MOUSTAKAS, J.M. NICOLAU, C. OLIVEROS, G. PINNA, R. PUDDU, J. PUIGDEFABREGAS, M. ROXO, A. SIMAO, G. STAMOU, N. TOMASI, D. USAI, and A. VACCA (1997). The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena, 29, 45-59.
- KOZERSKI H.P. and K. LEUSCHNER (1999). Plate sediment traps for slowly moving waters. Water Res., 33, 2913-2922.
- KRISTENSEN P., M. SONDERGAARD and E. JEPPESEN (1992). Resuspension in a shallow eutrophic lake. Hydrobiol., 228, 101-109.
- LEFEBVRE S. P. MARMONIER and G. PINAY (2004). Stream regulation and nitrogen dynamics in sediment interstices: comparison of natural and straightened sectors of a third order stream. River Res. Appl., 20, 499-512.
- LEFRANÇOIS J., C. GRIMALDI, C. GASCUEL and N. GILLIET (2007). Suspended sediment dynamics on two small agricultural catchments: the bank degradation as a determinant factor. Hydrol. Process., 21, 2923-2933.
- MADSEN J.D., P.A. CHAMBERS, W.J. JAMES, E.W. KOCH and D.F. WESTLAKE (2001). The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiol., 444, 71–84.
- NADEN P., P. RAMESHWARAN, O. MOUNTFORD and C. ROBERTSON (2006). The influence of macrophyte growth, typical of eutrophic conditions, on river flow velocities and turbulence production. Hydrol. Process., 20, 3915-3938.
- NEPF H.M. (1999). Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res., 35, 479-489.
- PALMER M.R., H.M. NEPF and T.J.R. PEDERSEN (2004). Observations of particle capture on a cylindrical collector: Implications for particle accumulation and removal in aquatic systems. Limnol. Oceanogr., 49, 76-85.
- PARR L.B. and C.F. MASON (2004). Causes of low oxygen in a lowland, regulated eutrophic river in Eastern England. Sci. Total Environ., 321, 273-286.
- PETTICREW E.L. and J. KALFF (1992). Water flow and clay retention in submerged macrophyte beds. Can. J. Fish. Aquat. Sci., 49, 2483-2489.
- PISCART C., S. NAVEL, C. MAAZOUZI, B. MONTUELLE, J. CORNUT, F. MERMILLOD-BLONDIN, M.C. CREUZE DES CHATELLIERS, L. SIMON and P. MARMONIER (2011). Leaf litter recycling in benthic and hyporheic layers in agricultural streams with different types of land use. Sci. Total Environ., 409, 4373-4380.
- SAND-JENSEN K. (1998). Influence of submerged macrophytes on sediment composition and near bed flow in lowland streams. Freshwater Biol., 39, 663-679.
- SAND-JENSEN K. (2003). Drag and reconfiguration of freshwater macrophytes. Freshwater Biol., 48, 271-283.
- SAND-JENSEN K. and J.R. MEBUS (1996). Fine scale patterns of water velocity within macrophyte patches in streams. Oikos, 76, 169-180.
- SAND-JENSEN K. and O. PEDERSEN (1999). Velocity gradients and turbulence around macrophyte stands in streams. Freshwater Biol., 42, 315-328.
- SCHULTZ M., H.P.KOZERSKI, T. PLUNTKE and K. RINKE (2003). The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Res., 37, 569-578.
- SMITH H.G. and D. DRAGOVICH (2008). Multi-scale sediment dynamics in an upland catchment, southeastern Australia: a synthesis. In: Sediment Dynamics in Changing Environments (Proceedings of a symposium held in Christchurch, New Zealand, December 2008), IAHS Publications, No. 325, pp. 291-297.
- STONE B.M. and H.T. SHEN (2002). Hydraulic resistance of flow in channels with cylindrical roughness. J. Hydraul. Eng., 128, 500-506.
- WHARTON G., J.A. COTTON, R.S. WOTTON, J.A.B. BASS, C.M. HEPPELL, M. TRIMMER, I.A. SANDERS and L.L. WARREN (2006). Macrophytes and suspension-feeding invertebrates modify flows and fine sediments in the Frome and Piddle Catchments, Dorset (UK). J. Hydrol., 330, 171-184.
- WOOD P.J. and P.D. ARMITAGE (1997). Biological effects of fine sediment in the lotic environment. Environ. Manage., 21, 203-217.