Abstracts
Résumé
Malgré la panoplie d’études axées sur la valeur prédictive du Level of Service and Case Management Inventory (LS/CMI), peu de chercheurs se sont penchés spécifiquement sur les biais de cet outil. Pour cette raison, l’âge, une information qui n’est pas utilisée dans le calcul actuariel du LS/CMI, mais qui est jugée incontournable par plusieurs chercheurs pour évaluer et prédire le risque de récidive criminelle des personnes contrevenantes, a été l’objet d’analyses approfondies. Autrement dit, la présente étude propose d’examiner les profils de personnes contrevenantes ayant fait l’objet d’une erreur de prédiction quant à la récidive criminelle par le LS/CMI, et ce, à partir de l’âge et de facteurs interagissant avec celui-ci ne figurant pas dans l’outil. Pour ce faire, des analyses d’arbres décisionnels auprès d’un large échantillon de détenus et de probationnaires québécois (n = 9 807) ont été effectuées. Les résultats suggèrent que l’erreur de prédiction n’est pas aléatoire et que les personnes plus âgées, particulièrement celles ayant été condamnées pour un crime sexuel ou pour un crime lié aux drogues, sont plus susceptibles d’en être l’objet. Tout porte à croire que ces observations seraient largement tributaires du processus d’actuarialisation des outils qui favorise l’utilisation de prédicteurs de la récidive pertinents seulement pour un sous-groupe relativement homogène et important de jeunes adultes.
Mots-clés :
- Âge,
- erreur de prédiction,
- évaluation du risque,
- Level of Service and Case Management Inventory
Abstract
Given the growing interest in the predictive validity of the Level of Service and Case Management Inventory (LS/CMI), researchers have overlooked potential biases within this tool. For this reason, age, a piece of information that is not included in the actuarial calculation of the LS/CMI, but which is considered essential by several researchers to assess and predict criminal recidivism risk, has been the subject of in-depth analyses. More precisely, the study proposes examining the profiles of offenders who have been subjected to a false prediction by the LS/CMI regarding criminal recidivism, based on age and factors interacting with it that do not appear in the tool. Consequently, decision tree analyses were conducted on a large sample of Quebec inmates and probationers (n = 9,807). The results suggest that false predictions are not random and that older offenders, especially those convicted of a sex crime or a drug-related crime, are more likely to experience it. There are several reasons to believe that these observations largely result from the actuarialization process of risk assessment tools, which favours the use of criminal recidivism predictors relevant only to a relatively homogeneous but large group of young adult offenders.
Keywords:
- Corrections,
- false prediction,
- risk assessment,
- Level of Service and Case Management Inventory
Resumen
A pesar del gran número de estudios sobre el valor predictivo del Level of Service and Case Management Inventory (LS/CMI), pocos investigadores han examinado específicamente los sesgos de esta herramienta. Por ello, la edad, un dato que no se utiliza en el cálculo actuarial del LS/CMI, pero que es considerado por muchos investigadores como esencial para evaluar y predecir el riesgo de reincidencia delictiva en los delincuentes, ha sido objeto de un amplio análisis. Precisamente, el presente estudio se propone examinar los perfiles de los delincuentes que fueron mal predichos en cuanto a reincidencia delictiva por el LS/CMI, en función de la edad y de factores que interactúan con la edad y que no están incluidos en la herramienta. Para ello, se han realizado análisis de árboles de decisión en una amplia muestra de reclusos y personas en libertad condicional de Quebec (n = 9.807). Los resultados sugieren que el error de predicción no es aleatorio y que los individuos de mayor edad, en particular los que tienen una condena por delitos sexuales o de drogas, son más propensos a sufrirlo. Esto hace pensar que estas observaciones son en gran medida una función del proceso de actuarialización de las herramientas, que promueve el uso de predictores de reincidencia que son relevantes sólo para un subgrupo relativamente homogéneo y importante de adultos jóvenes.
Palabras clave:
- Edad,
- error de predicción,
- evaluación de riesgos,
- Level of Service and Case Management
Appendices
Références
- Andrews, D. A., Bonta, J. et Hoge, R. D. (1990). Classification for effective rehabilitation : Rediscovering psychology. Criminal Justice and Behavior, 17(1), 19-52.
- Andrews, D. A., Bonta, J. et Wormith, J. S. (2004). Level of service/case management inventory : LS/CMI manual. Multi-Health Systems. Repéré à https://www.assessments.com/assessments_documentation/LSCMI_Tech_Brochure.pdf
- Angwin, J., Larson, J., Mattu, S. et Kirchner, L. (2016). Machine bias.Investigating Algorithmic Injustice. ProPublica. Repéré à https://www.propublica.org/series/machine-bias
- Barbaree, H. E., Langton, C. M. et Blanchard, R. (2007). Predicting recidivism in sex offenders using the VRAG and SORAG : The contribution of age-at-release. International Journal of Forensic Mental Health, 6(1), 29-46.
- Blokland, A. A., Nagin, D. et Nieuwbeerta, P. (2005). Life span offending trajectories of a Dutch conviction cohort. Criminology, 43(4), 919-954.
- Breiman, L., Friedman, J. H., Olshen, R. A. et Stone, C. J. (1984). Classification and regression trees. Boca Raton, FL : Chapman & Hall/CRC.
- Burgess, E. W. (1928). Factors determining success or failure on parole. Dans A. A. Bruce, A. J. Harno, E. W. Burgess et J. Landesco (dir.), The workings of the indeterminate sentence law and the parole system in Illinois (p. 221-234). Springfield, IL : State Board of Parole.
- Casey, P. M., Warren, R. K. et Elek, J. K. (2011). Using offender risk and needs assessment information at sentencing : Guidance for courts from a national working group. Williamsburg, VA : National Center for State Courts.
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2e éd.). Mahwah, NJ : Erlbaum.
- Cooke, D. J. et Michie, C. (2010). Limitations of diagnostic precision and predictive utility in the individual case : A challenge for forensic practice. Law and Human Behavior, 34(4), 259-274.
- Dror, I. E. (2017). Human expert performance in forensic decision making : seven different sources of bias. Australian Journal of Forensic Sciences, 49(5), 541-547.
- Dyck, H. L., Campbell, M. A. et Wershler, J. L. (2018). Real-world use of the risk–need–responsivity model and the level of service/case management inventory with community-supervised offenders. Law and Human Behavior, 42(3), 258.
- Elder Jr, G. H. (1994). Time, human agency, and social change : Perspectives on the life course. Social Psychology Quarterly, 57(1) 4-15.
- Everitt, B. S. et Skrondal, A. (2010). The Cambridge Dictionary of Statistics. Cambridge, Royaume-Uni : Cambridge University Press.
- Farrington, D. P. (1986). Age and crime. Crime and Justice, 7, 189-250.
- Farrington, D. P. (2003). Developmental and life-course criminology : Key theoretical and empirical issues. Criminology, 41(2), 221-225.
- Feeley, M. M. et Simon, J. (1992). The new penology : Notes on the emerging strategy of corrections and its implications. Criminology, 30(4), 449-474.
- Flores, A. W., Bechtel, K. et Lowenkamp, C. T. (2016). False positives, false negatives, and false analyses : A rejoinder to machine bias : There’s software used across the country to predict future criminals and it’s biased against blacks. Federal Probation, 80, 38-46.
- Gendreau, P., Little, T. et Goggin, C. (1996). A meta-analysis of the predictors of adult offender recidivism : What works ! Criminology, 34(4), 575-608.
- Giguère, G. et Lussier, P. (2016). Debunking the psychometric properties of the LS\CMI : An application of item response theory with a risk assessment instrument. Criminal Justice Journal, 46, 207-218.
- Gordon, H., Kelty, S. F. et Julian, R. (2015). Psychometric evaluation of the level of service/case management inventory among Australian offenders completing community-based sentences. Criminal Justice and Behavior 42, 1089-1109.
- Gottfredson, M. et Hirschi, T. (1990). A General Theory of Crime. Stanford, CA : Stanford University Press.
- Guay, J. P. (2016). L’évaluation du risque et des besoins criminogènes à la lumière des données probantes : Une étude de validation de la version française de l’inventaire de niveau de service et de gestion des cas–LS/CMI. European Review of Applied Psychology, 66(4), 199-210.
- Haas, S. M. et DeTardo-Bora, K. A. (2009). Inmate reentry and the utility of the LSI-R in case planning. Corrections Compendium, 34(1), 11-16.
- Hannah-Moffat, K. (2013). Actuarial sentencing : An “unsettled” proposition. Justice Quarterly, 30(2), 270-296.
- Hart, S. D., Michie, C. et Cooke, D. J. (2007). Precision of actuarial risk assessment instruments : Evaluating the “margins of error” of group v. individual predictions of violence. The British Journal of Psychiatry, 190(S49), s60-s65.
- Helmus, L., Thornton, D., Hanson, R. K. et Babchishin, K. M. (2012). Improving the predictive accuracy of Static-99 and Static-2002 with older sex offenders : Revised age weights. Sexual Abuse, 24(1), 64-101.
- Herzog, S. (2006). Estimating student retention and degree-completion time : Decision Trees and Neural Networks vis-à-vis Regression. New Directions for Institutional Research, 131, 17-33.
- Hirschi, T. et Gottfredson, M. (1983). Age and the explanation of crime. American Journal of Sociology, 89(3), 552-584.
- Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Journal of the Royal Statistical Society, 29(2), 119-127.
- Langan, P. A. et Levin, D. J. (2002). Recidivism of Prisoners Released in 1994. Washington, DC : Bureau of Justice Statistics, U.S. Department of Justice.
- Laub, J. H. et Sampson, R. J. (1993). Turning points in the life course : Why change matters to the study of crime. Criminology, 31(3), 301-325.
- Laub, J. H. et Sampson, R. J. (2003). Shared beginnings, divergent lives : Delinquent boys to age 70. Cambridge, MA : Harvard University Press.
- Laub, J. H. et Sampson, R. J. (2005). Coming of age in wartime : How World War II and the Korean War changed lives. Dans K. W. Schaie et G. Elder (dir.), Historical influences on lives & aging (p. 208-228). New York, NY : Springer.
- Loh, W. Y. et Shih, Y. S. (1997). Split selection methods for classification trees. Statistica Sinica, 815-840.
- Lussier, P. et Davies, G. (2011). A person-oriented perspective on sexual offenders, offending trajectories, and risk of recidivism : A new challenge for policymakers, risk assessors, and actuarial prediction ? Psychology, Public Policy, and Law, 17(4), 530.
- Lussier, P. et Frechette, J. (2022). Community reentry and the revolving door problem : Are individuals convicted of sexual offenses adequately prepared ? Journal of Criminal Justice.
- Lussier, P. et Healey, J. (2009). Rediscovering Quetelet, again : The “aging” offender and the prediction of reoffending in a sample of adult sex offenders. Justice Quarterly, 26(4), 827-856.
- Lussier, P. et McCuish, E. (2020). A Developmental Life-Course View of Sexual Offending : Taking Stock of Research on the Life-Course Development of Antisocial and Criminal Behavior. Dans J. Proulx, F. Cortoni, L. A. Craig et E. J. Letourneau (dir.), The Wiley Handbook of What Works with Sexual Offenders : Contemporary Perspectives in Theory, Assessment, Treatment, and Prevention (p. 39-70). Hoboken, NJ : John Wiley & Sons.
- Lussier, P., Tzoumakis, S., Cale, J. et Amirault, J. (2010). Criminal trajectories of adult sex offenders and the age effect : Examining the dynamic aspect of offending in adulthood. International Criminal Justice Review, 20(2), 147-168.
- Maltz, M. (1984). Recidivism. Orlando, FL : Academic Press.
- McCuish, E. C., Lussier, P. et Corrado, R. (2021). The Life-Course of Serious and Violent Youth Grown Up : A Twenty-Year Longitudinal Study. Abingdon, Royaume-Uni : Routledge.
- Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior : a developmental taxonomy. Psychological Review, 100(4), 674-701.
- Monahan, J. et Steadman, H. J. (1996). Violent storms and violent people : How meteorology can inform risk communication in mental health law. American Psychologist, 51(9), 931-938.
- Monahan, J., Skeem, J. et Lowenkamp, C. (2017). Age, risk assessment, and sanctioning : Overestimating the old, underestimating the young. Law and Human Behavior, 41(2), 191.
- Mossman, D. (1995). Dangerousness Decisions : An Essay on the Mathematics of Clinical Violence Prediction and Involuntary Hospitalization. The University of Chicago Law School Roundtable, 2, 95-138.
- Nagin, D. et Paternoster, R. (2000). Population heterogeneity and state dependence : State of the evidence and directions for future research. Journal of Quantitative Criminology, 16(2), 117-144.
- Olver, M. E., Stockdale, K. C. et Wormith, J. S. (2014). Thirty years of research on the Level of Service Scales : A meta-analytic examination of predictive accuracy and sources of variability. Psychological Assessment, 26(1), 156-176.
- Reitano, J. (2017). Adult Correctional Statistics in Canada, 2015/2016 [Juristat]. Ottawa : Statistics Canada. Repéré à https://www150.statcan.gc.ca/n1/pub/85-002-x/2017001/article/14700-eng.htm
- Rice, M. E. et Harris, G. T. (1995). Violent recidivism : Assessing predictive validity. Journal of Consulting and Clinical Psychology, 63(5), 737-748.
- Rice, M. E., Harris, G. T. et Lang, C. (2013). Validation of and revision to the VRAG and SORAG : the Violence Risk Appraisal Guide-Revised (VRAG-R). Psychological Assessment, 25, 951-965.
- Sampson, R. J. et Laub, J. H. (2003). Life-course desisters ? Trajectories of crime among delinquent boys followed to age 70. Criminology, 41(3), 555-592.
- Shepherd, S. M. et Lewis-Fernandez, R. (2016). Forensic risk assessment and cultural diversity : Contemporary challenges and future directions. Psychology, Public Policy, and Law, 22(4), 427-438.
- Singh, J. P., Grann, M. et Fazel, S. (2011). A comparative study of violent risk assessment tools : A systematic metaregression analysis of 68 studies involving 25,890 participants. Clinical Psychology Review, 31(3), 499-513.
- Skeem, J. L. et Lowenkamp, C. T. (2016). Risk, race, and recidivism : Predictive bias and disparate impact. Criminology, 54(4), 680-712.
- Skeem, J., Monahan, J. et Lowenkamp, C. (2016). Gender, risk assessment, and sanctioning : The cost of treating women like men. Law and Human Behavior, 40(5), 580-593.
- Steadman, H. J., Silver, E., Monahan, J., Appelbaum, P., Robbins, P. C., Mulvey, E. P., … Banks, S. (2000). A classification tree approach to the development of actuarial violence risk assessment tools. Law and Human Behavior, 24(1), 83-100.
- Wollert, R., Cramer, E., Waggoner, J., Skelton, A. et Vess, J. (2010). Recent research (N = 9,305) underscores the importance of using age-stratified actuarial tables in sex offender risk assessments. Sexual Abuse, 22(4), 471-490.
- Wormith, J. S. (2011). The legacy of D. A. Andrews in the field of criminal justice : How theory and research can change policy and practice. International Journal of Forensic Mental Health, 10, 78-82.
- Wormith, J. S., Hogg, S. M. et Guzzo, L. (2015). The predictive validity of the LS/CMI with aboriginal offenders in Canada. Criminal Justice and Behavior, 42(5), 481-508.
- Zapf, P. A. et Dror, I. E. (2017). Understanding and mitigating bias in forensic evaluation : Lessons from forensic science. International Journal of Forensic Mental Health, 16(3), 227-238.